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Why Suffix Sorting?

• It’s a topic that is more commonly taught in Europe and Japan
• I want our students to be exposed to this important topic too!

• It was related to my thesis
• I am well versed to teach cutting edge content in this space

• It’s an introductory topic which makes for a good segue into the 
importance of the Suffix Array!
• Searching large corpuses (e.g. Google), data compression, finding all 

occurrences of a particular substring, computational biology, etc. 
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Who is the intended talk for?

• Students enrolled in CSC-373 (Algorithm Design and Analysis)
ØThis can be the introduction to divide and conquer algorithms.

Background

• Have taken programming classes (e.g. CSC-209, CSC-148)

• Have taken data structures classes (e.g. CSC-263, CSC-265)
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Layout of Lesson

• ~5 minutes of the end of the previous class

• Assign the reading for next class

• ~20 minutes for this class

§ Recap of reading

§ Active Learning Exercise
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Intended Learning Objectives

1. Students should be able to construct a Trie and Radix Tree

2. Students should understand the difference (spatially) between a 
Trie and a Radix Tree. 

1. Students should be able to construct a Suffix Tree and Suffix Array

2. Students should understand the difference (spatially) between a 
Suffix Tree and a Suffix Array. 
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End of Class 1 + Homework

Beginning of Class 2



Trie (pronounced ‘try’)

Ø a dictionary tree (prefix tree)

• Composed of Nodes and Links
• Stores a set of words, each Node 

representing a character 
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A Trie on X = { ab, abc, bc }

*note: the sentinel symbol $ is used to terminate
the string, it is lexicographically smallest.



Radix Tree

Ø a Trie with a compressed chain of 
nodes

• Each internal node having at least 2 children
• AKA: Patricia Trie, Compacted Trie, and Radix 

Trie

A Radix Tree on X = { ab, abc, bc }
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Homework

• Algorithms, 4th edition by Sedgewick and Wayne. 

• Read Chapters:
• 5.1 (String Sorting) 
• 5.2 (Tries)
• 6. Pages: 875-878 (Sorting Suffixes and Suffix Arrays)

• After reading, check to ensure you’ve me today’s 
intended learning objectives!
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What is the goal?

• To identify all occurrences of a substring fast and efficiently.
• Think of trying to catalogue all the substrings of your favourite CS textbook!

• Instead of re-scanning the string every time we are looking for a 
pattern, we “prepare” a data structure to do the search easily.
• The idea is that any substring is a prefix of a suffix!
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a b c a a b c a b a c  c a b a  a c  b
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Suffix Tree

• Suffix Tree: a Suffix Radix Tree 
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Worksheet: Task 1!

• Let’s construct a 
Suffix Tree for the 
word “Mississippi”
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m i s s i s s i p p i
1   2  3  4  5  6  7 8  9  10 11



Issues with Suffix Trees

• Require a lot of space! Typically 10-20x more space than the 
original string!

• Even using some compression techniques, it’s still ~5x bigger than 
the original string!
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Suffix Array 16

a b c a a b c a b a c c a  b a  a c  b 
1   2   3  4   5  6   7  8  9  10 11 12 13 14  15  16 17 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

4 15 13 8 1 5 16 10 18 14 9 2 6 3 12 7 17 11SA

• Introduced by Manber & Myers (1990).

• Sorted array of all suffixes of a particular string.



Suffix Array

• Best algorithms were O (n log n) 

• In 2003,  several researchers emulated Farach's approach to 
provide a recursive linear algorithm for suffix sorting.

• In 2015 Baier introduced a non-recursive linear suffix sorting 
algorithm.
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Worksheet: Task 2!

• Let’s construct a Suffix Array 
from “Mississippi”

18

1 2 3 4 5 6 7 8 9 10 11

5 4 11 9 3 10 8 2 7 6 1SA

m i s s i s s i p p i
1   2  3  4  5  6  7 8  9  10 11 

Question: if we included $ where would it go?

Answer: at the beginning, it’s the smallest!

11 8 5 2 1 10 9 7 4 6 3SA-1



The Agenda for Next Week

• Suffix Array + Longest Common Prefix (LCP)

• Suffix Tree Algorithms
1. Weiner, then McCreight 1973/1976
2. Ukkonen, 1995
3. Farach, 1997

• Recursive vs. Iterative implementation
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Pedagogical Approach

• The 3 “P”s: Prepare, Practice, and Perform
• Similar to that in CSC-108 and CSC-148

• Actively learning in the classroom, but also applying these 
experientially through homework assignments and weekly labs. 

• Breaking up topics into foundational building blocks for them to 
tackle one step at a time (divide and conquer J). 
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Q A&

Thanks for listening! J

Does anyone have any questions?
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