
Suffix Sorting
Michael Liut

University of Toronto

Overview

1. Introduction/Background of the Audience

2. Suffix Sorting

3. Pedagogical Approach Taken

4. Question & Answer

2

Introduction/Background 3

Why Suffix Sorting?

• It’s a topic that is more commonly taught in Europe and Japan
• I want our students to be exposed to this important topic too!

• It was related to my thesis
• I am well versed to teach cutting edge content in this space

• It’s an introductory topic which makes for a good segue into the
importance of the Suffix Array!
• Searching large corpuses (e.g. Google), data compression, finding all

occurrences of a particular substring, computational biology, etc.

4

Who is the intended talk for?

• Students enrolled in CSC-373 (Algorithm Design and Analysis)
ØThis can be the introduction to divide and conquer algorithms.

Background

• Have taken programming classes (e.g. CSC-209, CSC-148)

• Have taken data structures classes (e.g. CSC-263, CSC-265)

5

Layout of Lesson

• ~5 minutes of the end of the previous class

• Assign the reading for next class

• ~20 minutes for this class

§ Recap of reading

§ Active Learning Exercise

6

Intended Learning Objectives

1. Students should be able to construct a Trie and Radix Tree

2. Students should understand the difference (spatially) between a
Trie and a Radix Tree.

1. Students should be able to construct a Suffix Tree and Suffix Array

2. Students should understand the difference (spatially) between a
Suffix Tree and a Suffix Array.

7

End of Class 1 + Homework

Beginning of Class 2

Trie (pronounced ‘try’)

Ø a dictionary tree (prefix tree)

• Composed of Nodes and Links
• Stores a set of words, each Node

representing a character

8

a b$

b

$

ab

c

$
abc

c

bc
$

$

A Trie on X = { ab, abc, bc }

*note: the sentinel symbol $ is used to terminate
the string, it is lexicographically smallest.

Radix Tree

Ø a Trie with a compressed chain of
nodes

• Each internal node having at least 2 children
• AKA: Patricia Trie, Compacted Trie, and Radix

Trie

A Radix Tree on X = { ab, abc, bc }

ab bc$

$

ab

c

$
abc

bc
$

$

9

Homework

• Algorithms, 4th edition by Sedgewick and Wayne.

• Read Chapters:
• 5.1 (String Sorting)
• 5.2 (Tries)
• 6. Pages: 875-878 (Sorting Suffixes and Suffix Arrays)

• After reading, check to ensure you’ve me today’s
intended learning objectives!

10

Suffix Sorting 11

What is the goal?

• To identify all occurrences of a substring fast and efficiently.
• Think of trying to catalogue all the substrings of your favourite CS textbook!

• Instead of re-scanning the string every time we are looking for a
pattern, we “prepare” a data structure to do the search easily.
• The idea is that any substring is a prefix of a suffix!

12

a b c a a b c a b a c c a b a a c b
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Suffix Tree

• Suffix Tree: a Suffix Radix Tree

13

0

1 1 1

2 2 2 18 2 3 2 17 11

3 4

12 7

14 9 2 64 15 16 10

3 4

13 8 1 5

a

a
b

c

a ca

b

a
ca

c

a

ba

abcabaccabaacb$

bcabaccabaacb$

baccabaacb$ccabaacb$acb$

cb$ b$

cabaacb$

$

acb$ ccabaacb$

abcabaccabaacb$

baccabaacb$

abcabaccabaacb$

ccabaacb$

cabaacb$

acb$

b$

a b c a a b c a b a c c a b a a c b
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

$

$

$

$$

$

$

Worksheet: Task 1!

• Let’s construct a
Suffix Tree for the
word “Mississippi”

14

m i s s i s s i p p i
1 2 3 4 5 6 7 8 9 10 11

Issues with Suffix Trees

• Require a lot of space! Typically 10-20x more space than the
original string!

• Even using some compression techniques, it’s still ~5x bigger than
the original string!

15

Suffix Array 16

a b c a a b c a b a c c a b a a c b
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

4 15 13 8 1 5 16 10 18 14 9 2 6 3 12 7 17 11SA

• Introduced by Manber & Myers (1990).

• Sorted array of all suffixes of a particular string.

Suffix Array

• Best algorithms were O (n log n)

• In 2003, several researchers emulated Farach's approach to
provide a recursive linear algorithm for suffix sorting.

• In 2015 Baier introduced a non-recursive linear suffix sorting
algorithm.

17

Worksheet: Task 2!

• Let’s construct a Suffix Array
from “Mississippi”

18

1 2 3 4 5 6 7 8 9 10 11

5 4 11 9 3 10 8 2 7 6 1SA

m i s s i s s i p p i
1 2 3 4 5 6 7 8 9 10 11

Question: if we included $ where would it go?

Answer: at the beginning, it’s the smallest!

11 8 5 2 1 10 9 7 4 6 3SA-1

The Agenda for Next Week

• Suffix Array + Longest Common Prefix (LCP)

• Suffix Tree Algorithms
1. Weiner, then McCreight 1973/1976
2. Ukkonen, 1995
3. Farach, 1997

• Recursive vs. Iterative implementation

19

Pedagogical Approach 20

Pedagogical Approach

• The 3 “P”s: Prepare, Practice, and Perform
• Similar to that in CSC-108 and CSC-148

• Actively learning in the classroom, but also applying these
experientially through homework assignments and weekly labs.

• Breaking up topics into foundational building blocks for them to
tackle one step at a time (divide and conquer J).

21

22

Q A&

Thanks for listening! J

Does anyone have any questions?

References

Baier, U. Linear-time Suffix Sorting. Ulm University, Germany. November 2015.

Franek, F. Suffix-based text indices, construction algorithms, and applications.
2nd CanaDAM Conference, Centre de Recherches, Mathématiques in Montréal. May 2009.

Liut, M. Computing Lyndon Arrays. McMaster University, Canada. September 2019.

Sedgewick, R. and Wayne, K. Algorithms (4th ed.). Addison-Wesley. March 2011.

Yang, J. Algorithm of Suffix Tree. Osaka University, Japan. November 2011.

23

